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SO (1,3) symmetry and Coulomb scattering 
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Department of Mathematics, Hofstra University, Hempstead, NY 11550, USA 

Received 12 March 1985 

Abstract. The Coulomb S-matrix is calculated via spherical functions on a hyperboloid. 
Relations with the standard results are discussed, and further prospects of this viewpoint 
are noted. 

It is well known that the unbounded states of the non-relativistic Coulomb problem 
possess an SO( 1,3) symmetry. Bander and Itzykson (1966) have given a construction 
relating the eigenfunctions of the Schrodinger equation with the spherical functions 
on a hyperboloid, on which the S0(1,3)  group acts naturally. Here we will calculate 
the S-matrix elements from the spherical functions and the result is, modulo a factor 
depending only on the total energy, the same as what is given in any standard quantum 
mechanics text book (cf Landau and Lifshitz 1977). As pointed out by Hormander 
(1976) and others, in calculating the S-matrix from the time-dependent scattering 
theory for long-range potentials, the phase shift is determined only up to a factor 
which may depend on the total energy as above. Our result, although not ‘standard’, 
is in agreement with the relativistic version: Herbst (1974) has written down explicitly 
the scattering operator for the spinless relativistic Coulomb problem up to first order 
in a =&. By taking the non-relativistic limit, he gets an operator which differs from 
the non-relativistic Coulomb scattering operator by a factor of r( 1 + ip)/T( 1 - ip), 
where p is the reciprocal energy. From our calculation below, we have indeed 

r ( / + l - i p )  T( l+ ip)  
r ( l + l + i p )  T(1-ip) 

s, = 

the first term being the ‘standard’ result. Let 

= {Yo, Y l ,  Y2, Y 3  E R41y:-~: - Y:  -Y:  = 1, Yo> 0) 

denote the one sheeted unit hyperboloid. It is convenient to write y e  H as 
(yo, ( y :  - l)1’2R) where R E  S2  c R 3  is a unit vector. The spherical functions on H are 
of the form 

(A-  1)-”“~ip‘:~,h?(~~) ~ ( n )  (2) 

where B is the associated Legendre function of the first kind, and Y is the spherical 
harmonics on S 2 .  Define 

0305-4470/85/090499 -t 03s02.25 0 1985 The Institute of Physics L499 



L500 Letter to the Editor 

Here we can either view 6 = (e1, 02, 6,)  E S2, a unit vector in R 3 ,  or 6 = (1, el, 6 2 ,  &), 
[ , ]  the Lorentz inner product (+---), and [ 0,191 = 0. 

(cosh U - sinh U cos u)ip-l  = 2(2r)'/'T(ip) 

From Vilenkin (1968, p 529) we have the following identity 

substituting 

yo = Cosh U, (&- 1)'12 = sinh U, (a, e) = COS U 

into (4), and using 

we obtain 

which is a linear combination of the spherical functions (2). 
The function [y ,  elip-' plays the same role on H as exp(i(x, k ) )  on R3:  these are 

eigenfunctions for the Laplace-Beltrami operator on H ; they form irreducible sub- 
spaces for the SO( 1,3) representation for fixed real p ;  they are the basis for the Fourier 
expansion on H (for details see Gelfand et al 1966). In light of the above, it is natural 
to consider the incoming states as 

+!I: = [y ,  elip-' (8) 

Ikl = P-', k = lkl6. (9) 

*- = (*+)* (10) 

,#,; = [y ,  el-ip-1 (11) 

where 

Using 

we have 

and 

S ( k ,  k ' )  = (*l, *i,) 

= [y ,  6] 'p-1[y ,  VIip'-' dy 

where dy is the S0(1,3) invariant volume form on H 

dy = (y:  - 1)1'2 dy0d.n. (13) 

We apply Mehler's inversion formula (Magnus er a1 1966) and some identities for the 
r function and obtain 

1 6 , ( p ' )  r ( l + l - i p ) r ( l + i p )  
2 r  p p  r ( l + l + i p ) r ( l - i p )  

S( k, k ' )  =- - 1 Y , m ( @ )  YT,(e'). 
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Thus 

r ( l + l - i p ) I ' ( l + i p )  
r(Z+,l +p)  r ( i  -ip) 

s, = 

as claimed in (1). 
In drawing the analogy between [y ,  elip-' and exp(i(x, k)), we can also interpret 

these as free plane waves, corresponding classically to a family of parallel geodesics 
on H. This point of view will be helpful when one considers the problem of perturbation 
of Coulomb potential or scattering for Coulomb plus a short range potential. Here 
we are using the fact that the geodesic flow on H is canonical related to the Hamiltonian 
flow of the positive energy Coulomb potential. 
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